Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3596, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678037

RESUMO

The long-term effects of the Central Atlantic Magmatic Province, a large igneous province connected to the end-Triassic mass-extinction (201.5 Ma), remain largely elusive. Here, we document the persistence of volcanic-induced mercury (Hg) pollution and its effects on the biosphere for ~1.3 million years after the extinction event. In sediments recovered in Germany (Schandelah-1 core), we record not only high abundances of malformed fern spores at the Triassic-Jurassic boundary, but also during the lower Jurassic Hettangian, indicating repeated vegetation disturbance and stress that was eccentricity-forced. Crucially, these abundances correspond to increases in sedimentary Hg-concentrations. Hg-isotope ratios (δ202Hg, Δ199Hg) suggest a volcanic source of Hg-enrichment at the Triassic-Jurassic boundary but a terrestrial source for the early Jurassic peaks. We conclude that volcanically injected Hg across the extinction was repeatedly remobilized from coastal wetlands and hinterland areas during eccentricity-forced phases of severe hydrological upheaval and erosion, focusing Hg-pollution in the Central European Basin.


Assuntos
Extinção Biológica , Gleiquênias , Fósseis , Sedimentos Geológicos , Mercúrio , Mercúrio/análise , Sedimentos Geológicos/química , Alemanha , Erupções Vulcânicas , Mutagênese , Clima , Esporos
2.
Sci Rep ; 11(1): 7438, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33811229

RESUMO

Impact ejecta formation and emplacement is of great importance when it comes to understanding the process of impact cratering and consequences of impact events in general. Here we present a multidisciplinary investigation of a distal impact ejecta layer, the Blockhorizont, that occurs near Bernhardzell in eastern Switzerland. We provide unambiguous evidence that this layer is impact-related by confirming the presence of shocked quartz grains exhibiting multiple sets of planar deformation features. Average shock pressures recorded by the quartz grains are ~ 19 GPa for the investigated sample. U-Pb dating of zircon grains from bentonites in close stratigraphic context allows us to constrain the depositional age of the Blockhorizont to ~ 14.8 Ma. This age, in combination with geochemical and paleontological analysis of ejecta particles, is consistent with deposition of this material as distal impact ejecta from the Ries impact structure, located ~ 180 km away, in Germany. Our observations are important for constraining models of impact ejecta emplacement as ballistically and non-ballistically transported fragments, derived from vastly different depths in the pre-impact target, occur together within the ejecta layer. These observations make the Ries ejecta one of the most completely preserved ejecta deposit on Earth for an impact structure of that size.

3.
Sci Rep ; 10(1): 3482, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103087

RESUMO

Elevated concentrations of iridium (Ir) and other platinum-group elements (PGE) have been reported in both terrestrial and marine sediments associated with the end-Triassic mass extinction (ETE) c. 201.5 million years ago. The source of the PGEs has been attributed to condensed vapor and melt from an extraterrestrial impactor or to volcanism. Here we report new PGE data for volcanic rocks of the Central Atlantic Magmatic Province (CAMP) in Morocco and show that their Pd/Ir, Pt/Ir and Pt/Rh ratios are similar to marine and terrestrial sediments at the ETE, and very different from potential impactors. Hence, we propose the PGEs provide a new temporal correlation of CAMP volcanism to the ETE, corroborating the view that mass extinctions may be caused by volcanism.

4.
Sci Adv ; 5(10): eaaw4018, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31681836

RESUMO

During the past 600 million years of Earth history, four of five major extinction events were synchronous with volcanism in large igneous provinces. Despite improved temporal frameworks for these events, the mechanisms causing extinctions remain unclear. Volcanic emissions of greenhouse gases, SO2, and halocarbons are generally considered as major factors in the biotic crises, resulting in global warming, acid deposition, and ozone layer depletion. Here, we show that pulsed elevated concentrations of mercury in marine and terrestrial sediments across the Triassic-Jurassic boundary in southern Scandinavia and northern Germany correlate with intense volcanic activity in the Central Atlantic Magmatic Province. The increased levels of mercury-the most genotoxic element on Earth-also correlate with high occurrences of abnormal fern spores, indicating severe environmental stress and genetic disturbance in the parent plants. We conclude that this offers compelling evidence that emissions of toxic volcanogenic substances contributed to the end-Triassic biotic crisis.


Assuntos
Embriófitas , Extinção Biológica , Mercúrio , Erupções Vulcânicas , Embriófitas/efeitos dos fármacos , Embriófitas/genética , Gleiquênias , Fósseis , Alemanha , Mercúrio/toxicidade , Mutagênese , Países Escandinavos e Nórdicos , Estresse Fisiológico
5.
Sci Rep ; 9(1): 12518, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467345

RESUMO

Sea-level change is an important parameter controlling the expansion of oxygen-depleted conditions in neritic settings during oceanic anoxic events (OAEs). Despite this fundamental role, it remains on a short timescale (<1 Myr) one of the least constrained parameters for numerous OAEs. Here we present sedimentological and geochemical evidence from Morocco and East Greenland showing that a forced regression shortly precedes (ca.102 kyr) the major transgression associated with the Toarcian OAE. The forced regression can be correlated over distances greater than 3000 km in numerous Tethyan and Boreal basins, indicating that the relative sea-level change was driven by eustastic fluctuations. The major amplitude (>50 m) and short duration of the forced regression suggests that it was most likely related to the transient waxing and waning of polar ice sheet. We suggest that this short-lived glaciation might have a genetic link with the inception of the Toarcian OAE. Indeed, during the deglaciation and the accompanying sea-level rise, the thawing permafrost may have released important quantities of methane into the atmosphere that would have contributed to the Toarcian OAE rapid warming and its characteristic negative carbon isotope excursion. This study offers a hypothesis on how some hyperthermal events might be rooted in short-lived "cold-snap" episodes.

6.
Proc Natl Acad Sci U S A ; 112(26): 7909-13, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080428

RESUMO

A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ(13)Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.


Assuntos
Dinossauros , Ecossistema , Clima Tropical , Animais , Isótopos de Carbono/análise , Incêndios , Temperatura Alta
7.
PLoS One ; 7(10): e47236, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077574

RESUMO

The end-Triassic mass extinction event (∼201.4 million years ago) caused major faunal and floral turnovers in both the marine and terrestrial realms. The biotic changes have been attributed to extreme greenhouse warming across the Triassic-Jurassic (T-J) boundary caused by massive release of carbon dioxide and/or methane related to extensive volcanism in the Central Atlantic Magmatic Province (CAMP), resulting in a more humid climate with increased storminess and lightning activity. Lightning strikes are considered the primary source of wildfires, producing charcoal, microscopically recognized as inertinite macerals. The presence of polycyclic aromatic hydrocarbons (PAHs) of pyrolytic origin and allochthonous charcoal in siliciclastic T-J boundary strata has suggested widespread wildfire activity at the time. We have investigated largely autochthonous coal and coaly beds across the T-J boundary in Sweden and Denmark. These beds consist of predominantly organic material from the in situ vegetation in the mires, and as the coaly beds represent a substantial period of time they are excellent environmental archives. We document a remarkable increase in inertinite content in the coal and coaly beds across the T-J boundary. We show estimated burning temperatures derived from inertinite reflectance measurements coupled with palynological data and conclude that pre-boundary late Rhaetian mire wildfires included high-temperature crown fires, whereas latest Rhaetian-Sinemurian mire wildfires were more frequent but dominated by lower temperature surface fires. Our results suggest a major change in the mire ecosystems across the T-J boundary from forested, conifer dominated mires to mires with a predominantly herbaceous and shrubby vegetation. Contrary to the overall regional vegetation for which onset of recovery commenced in the early Hettangian, the sensitive mire ecosystem remained affected during the Hettangian and did not start to recover until around the Hettangian-Sinemurian boundary. Decreasing inertinite content through the Lower Jurassic suggests that fire activity gradually resumed to considerable lower levels.


Assuntos
Dióxido de Carbono , Incêndios , Paleontologia , Árvores , Clima , Conservação dos Recursos Naturais , Dinamarca , Ecossistema , Extinção Biológica , Fósseis , Humanos , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...